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Exact solution of the Poisson equation for a DC current on 
a saddle-shaped Helmholtz coil 

H Hanssum 
Institut fur Biophysikalische Chemie der Johann Wolfgang Goethe-Universitat, Frankfurt, 
Haus 75A, Universitat-Klinikum, Theodor-Stern-Kai 7, D-6000 Frankfurt am Main 70, 
Germany 

Received 12 January 1983, in final form 27 April 1983 

Abstract. Explicit expressions for the vector potential associated with a DC current on a 
saddle-shaped Helmholtz coil have been evaluated. The Cartesian and cylindrical com- 
ponents of the magnetic field in a vacuum are derived from the vector potential. The 
solution for the components of the magnetic field can be written in closed form using 
elliptic integrals of the first and second kinds. The expressions may serve as a basis for 
the optimisation of various coil types used in high-resolution N M R  spectroscopy and N M R  
tomography. 

1. Introduction 

Saddle-shaped coils have been in use in various fields of nuclear magnetic resonance 
(NMR) spectroscopy. The development of NMR imaging and NMR tomography has 
stimulated the search for new coil types which provide constant, pulsed, or alternating 
magnetic fields with certain homogeneity or gradient properties. 

The magnetic field of a saddle-shaped coil has previously been calculated for points 
in and near the magnetic centre of the coil (Hoult 1978, Hoult and Richards 1976). 
Hoult (1978) investigated a description of the magnetic field in terms of an infinite 
series of spherical harmonics. Since the lowest-order terms for the variables r and z 
are of second order, higher-order terms have to be considered even if points quite 
near the centre of the coil will be calculated. 

In the present investigation a closed expression for the magnetic field of a saddle- 
shaped Helmholtz coil in a vacuum for the case of direct currents is derived. The 
expressions derived are analytically exact. They do not involve expansions about the 
centre of the current configuration. The more general approachderivation of B 
from explicit expressions of the vector potential A-was used, so that alternating 
currents may also be considered. 

The expressions for A,  and A ,  become extremely clumsy if they are written 
explicitly in Cartesian coordinates. In many experimental situations, however, a 
representation of the components of B as a function of x ,  y and t is desired. Therefore, 
the components of A and B are expressed in Cartesian as well as cylindrical coordin- 
ates, the cylindrical coordinates being the more elegant for this problem. 
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2. Calculation of the vector potential 

The magnetic field in a vacuum resulting from a current in a cylindrical saddle-shaped 
coil (figure 1) is evaluated with reference to the geometrical parameters of the coil: 
Ro and Zo are the radius and half-height of the cylinder defining the geometry of the 
coil. The conductor is assumed to be infinitely thin and consists of two closed loops. 
The direction of the currents in the loops is such that the B field at r = 0 is parallel 
to the +x axis (see figure 1). According to the superposition principle the magnetic 
field is calculated from Poisson’s equation 

A = - 4 x j  (1) 

by adding the contributions of the four arcs at z ’  = *Zo and their vertical connections 
at cp’ = *q50 and *q50 + x .  

Figure 1. Geometry of the saddle-shaped Helmholtz coil with definition of geometrical 
parameters R,,, Zo, & and direction of the currents. 

The current of the saddle-shaped coil is represented by the current density 

(2a 1 
(2b  1 

( j (a )+ j (u) ) ,  a, U = 1 , 2 ,  3,4.  The current density in the coil arcs is given by 

j y ’  = -I sin cp‘ S ( r ’ - R o )  S ( z ’ - Z g ) ,  

j r )  = I cos cp ’ S ( r ’  - Ro) S ( z  ’ - 2: ), 

j y ’  = 0, (2c 1 
with -q50scp’S&,ZG =fZO, and ~-q5~Scp’s.rr+r$o. 

The current density in the vertical connections has the components 
j y  =i:”’ = 0, 

j r ’  =rS(r‘ - -R)S(Ro(~’-Roq5~)  

with q5: = .t40, .rr *q5” and - Z o ~ z ’ s Z o .  The vector potential of the magnetic field 
is given by 
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The direction of the currents will be described by the limits of integration. The 
contribution of the first arc (x’ > 0, z ’  > 0) to the x- component of the vector potential 
is derived using equations (2a),  (3) and (4) for the integrations with respect to r’ and 
2’: 

The vector potential is therefore given by 

-do sin Q’ dcp’ 
Ax =-rRoldu [ r2 -2rRocos (cp ’ -cp )+R~+(z  -20)2]1/2’ 

Substitution of cp ’  by 7~ - 2x +cp  yields 

(6) 
‘2 2 cos cp sin x cos x -sin cp(cos2 x -sin2 x )  

dx, (1 - k: sin2 x)’” A ,  =dk2 I,, 

The integration has to be carried out in the limits of xi1’ =&T + c p  -4” )  and xi” = 
;(T + q  +&). Equation (6) can be expressed in terms of the elliptic integrals of the 
first and second kinds (Gradshteyn and Ryzhik 1965, Milne-Thomson 1965): 

d 

F ( 4 ,  k )  = (1  - k 2  sin2 x)-IJ2 dx, (9a ) 
0 

d 

E ( q 5 , k ) = l  11-k2sin2x)1J2dx.  
0 

The solution of equation (6) is then given by 

A ,  = -dk;’{2 ~ o s c p ( D ~ ~ - D ~ ~ ) + s i n c p [ 2 E ( x ~ ,  k 2 )  

-2E(x1, k 2 ) + ( k :  -2)(F(x2, kzl-F(x1, k2))l) 

D k , m  = (1 - k; sin2 x ~ ) ’ ’ ~ .  

( loa)  
with 

(106) 

The y component of A associated with the current in the first arc ( x ’ > O ,  z ’>O)  
is evaluated using equation ( 5 6 ) :  

A ,  =dk;’{coscp[2€(~2, k2)-2E(xi, k2)+(k: -2)(F(x2, k 2 ) - F ( ~ 1 ,  k2))] 

-2  sincp(D22-D21)}. (11) 

A;(r ,  cp, z )  = 0. 

From equation (2c) follows: 

(12) 
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The components of the vector potential with respect to cylindrical coordinates are 
evaluated using the projection of A(r, cp, z )  on the coordinate e,: 

Ar(r, cp, z )  =A,  (r, cp, 2 )  cos cp +A,(r, cp, z )  sin cp, 

A,(r, CP, 2 )   A AX(^', Q, Z) sin CP +A,(r, 992) COS C p .  

( 1 3 ~ )  

and the component in the x-y plane perpendicular to e, is given by 

( 1 3 6 )  

( 1 4 0 )  

( 1 4 6 )  

( 1 4 c )  

The vector potential of the arc can therefore be written as 

A, = -2dk;' [( 1 - k z  sin2 x 2 ) 1 / 2  - ( 1  - k :  sin' x I )" ' ] ,  

A, = 2 d k T 1 { E ( x 2 ,  k 2 ) - E ( X 1 ,  k ' ) + ( k ; / 2 - 1 ) ( F ( x z ,  k 2 ) - F ( x 1 ,  k2)) ) ,  

AZk, cp, 2 )  = 0.  

An independent calculation using j ,  = IS(r'-RRo)S(z'-Zo), j r  = j z  = 0, and 

and 
j q ( r ' )  c o s ( a ' + ~ / 2 )  

jr -r'l dr' 

led to identical results. 

is determined by 
The vector potential resulting from the currents in the vertical parts of the conductor 

From equations ( 1 5 )  it follows that AL: = A i  =A: =A: = 0, U = 1 ,  2 ,  3 ,  4 .  For the 
conductor at c p ' = ~ $ ~  and with the direction of I as defined in figure 1 the vector 
potential is given by 

( 1 6 a )  A, = -I[ln(z -Zo+R-)-ln(z +ZO+R+) ] .  

~ + - = ( r ~ - 2 r ~ ~ c o s ( c p  - 4 0 ) + ~ t  + ( z  + -z,,)~)~/'. 

is calculated. Summation of the terms A"  +A"  yields in Cartesian coordinates: 

R+- is given by 

( 1 6 6 )  
In the following, the.tota1 vector potential due to the current I in the two loops 
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The following abbreviations have been used: 

X I ,  = (4, + cp + ( i  - 1)77)/2, (18a, b, c )  

Z k  = (-l)kzO, 4, = (-1)j40, Dljk = ( 1  - k :  sin2 x , , ) "~ .  ( 1 8 4  e , f )  

In order to write A,, A, and A, consistently in Cartesian coordinates, the following 
substitutions have to be made in (17)  

x, = (-l)'Xo, Y, = ( - l ) 'Yo ,  

r = ( 1 9 4  b )  R o = ( X : + Y o )  9 

40=sin-1[Yo/(Xi + Y : ) " ~ ] ,  ( 1 9 ~  d )  

cos cp =x/(x2+y2) ' /2 ,  k: = 4 r ~ ~ [ ( r + ~ ~ ) ~ + ( z  - z k ) 2 ] - 1 .  (19e,f) 

The expressions for the components of A in cylindrical coordinates can be written 
in a much more compact form: 

2 1 / 2  

sin cp = y/(x2 + y2)ll2, 

3. Magnetic field 

The components of B in  cylindrical coordinates were derived using standard formulae 
for B = rot A in cylindrical coordinates: 

(21a 1 
(216)  

(21C) 

B, = r- ' (aA,/acp) - (aA,/dz), 

B, = r - ' [ (d(rA,) /ar)  - (aA,/acp)]. 

B, = (aA,/az) - (dA,/ar), 

The derivation of the elliptic integrals was carried out using ( 1 )  

aE(4, k ) / a k  =k-'(E(4, k)-F(4, k)), 
~ ( d , k ) / a k  = ( l - k 2 ) - ' k - ' [ E - ( 1 - k 2 ) F - k 2 s i n 4  c o s ~ ( ~ - k ~ s i n ~ ~ ) - ' / ~ ] .  

The result is 
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The following abbreviations have been used: 

g = ( 4 r 3 / 2 ~  AI2 )-’, ( 2 2 4  e ,  f) 
(2%) 

D;,k = ( I  - k f  COS2xij)-1’2, Dijk see (18f). (22h) 

The Cartesian components of B were derived using (17). The derivations aAi/ax, 
cannot be expressed in closed form, since aE/ax, aE/ay, aF/ax and aF/ay lead to an 
infinite series. These terms, however, cancel in the differences aAy/ax -aA,/ay, so 
that the Cartesian components of B can be represented by 

S . .  =sin x . ,  I J T  cij = cos xij, 

G~~ = [ ( r  + R,)’ - 4 r ~ ~  COS’ xij]-’, 

2 

- I  1 ( - l ) t+J+kg  
i.1.k = 1 r 

Substitution of r by ( ~ ~ + y ’ ) ’ / ~  in (22c) leads to B,. 

(236) 

4. Polynomial expansion of B, 

In  the following, some limiting expressions, which avoid the elliptic integrals, are 
evaluated and compared to expressions derived previously (3). For small values of k 
and q5 a trigonometric series of the elliptic integrals may be used 

F(q5, k)=2rr - ’K4-s in4  cos4 [ao+(2a1 /3 ) s in24+ .  . .]. (24) 

and a, are functions of k and may be represented as a power series in k ;  for details 

Inserting the trigonometric series and the power series for k “  in (22a) and 

(25a 1 

see the appendix. 

summation yields 

B, = Ao[l  + R$B +r2AZr  +z2A2z +r2f(cp)A2, +.  . .] 

A, = (81Zo cos cp sin 40)/RoB1’2, (256 1 

Azr = -(1/Ri)-(1/2B)-(3Ri/2B2)+(5Ri/B3), ( 2 5 ~  1 
AzZ = - (6R; /B2)+(15Ri2i /2B3) ,  (25d) 

with 
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A'v = (4/R:)+(2/B)+(3Ri/2B2)+(5Ri/2B3), W e )  
f (cp 1 = cos' cp cos2 do + sin2 cp (sin2 do - 2 cos' 40), (25f 1 
B = R: +z;. (25g) 

Inspection of ( 2 2 b )  gives that B, = 0 for cp = 0. The expansion of B, at the origin is, 
therefore, given by ( 2 5 a )  with 

A .  = 81Zo sin d O / R d l  'I2, and f = cos' 40. (25h,  i )  

For 4o = 1r/3 and r = z = 0, this result is identical to equation (10) of Hoult and Richards 
(1976) if the correct units are used in the expressions. The dimension of B is 
determined by the factor Ao. Using cgs units for the coil parameters and for the 
currents (10 amperes= 1 cm g s ), the result is given in Gauss (1G= I/ '  112 -1 

1 cm-1/2 gm s-l), 
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Appendix. Series expansion of the incomplete elliptic integrals of the first and 
second kinds 

For small values of k and 4, we may use the series (Gradshteyn and Ryzhik 1965) 

F ( 4 ,  k )  I, 2K12&$ -sin 4 cos 4{ao+  (2/3)al  sin' 4 +[(2 x 4)/(3 x 5) ]a2  sin4 4 +.  . .}, 

E ( 4 ,  k ) = 2 I r - ' & + s i n 4  c o s 4 { b o + ( 2 / 3 ) b l s i n 2 ~ + [ ( 2 x 4 ) / ( 3 x 5 ) ] b z s i n 4 4  +..  .}. 

The complete elliptic integrals I? and 

(AI) 

(A21 
as well as the coefficients 

(2n  - l)!! 
a,= 5 ( )'k'", 

, ,="+I 2"n! 

o' (2mm;1,)!!)' k Z m / ( 2 m  - 1) 
b , =  c ( 

m = w + l  

are functions of k .  In the case of cylindrical coordinates k'" may be expanded according 
to 

k ' " = ( T )  4rR0 " (1+ 2 r R o - 2 z Z k  
B ( ' 4 5 )  

withB =Z?i +Z;. Forsmallrandz,thetermsyl =2(rRo-zZk)/B a n d y z = ( r 2 + z 2 ) / B  
are of first and second order, respectively. Therefore, the following series representa- 
tion may be used 
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For natural n the coefficients are given by 

c,(n)=(-l)&[n(n +l)(n + 2 ) .  . . (n +/A -l)]//A! 

Therefore, 

The terms y y - " y ;  are of the order /A + v  in r and z .  Replacing k2" in (A3) and (A4) 
by (A8) and inserting (A3) and (A4) in (Al) and (A2) yields the elliptic integrals in 
the form of a power series in r and z .  
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